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We used density-functional theory based first-principles simulations to study the effects of uniaxial strain
and quantum confinement on the electronic properties of germanium nanowires along the �110� direction, such
as the energy gap and the effective masses of the electron and hole. The diameters of the nanowires being
studied are up to 50 Å. As shown in our calculations, the Ge �110� nanowires possess a direct band gap, in
contrast to the nature of an indirect band gap in bulk. We discovered that the band gap and the effective masses
of charge carries can be modulated by applying uniaxial strain to the nanowires. These strain modulations are
size dependent. For a smaller wire ��12 Å�, the band gap is almost a linear function of strain; compressive
strain increases the gap while tensile strain reduces the gap. For a larger wire �20 Å–50 Å�, the variation in
the band gap with respect to strain shows nearly parabolic behavior: compressive strain beyond −1% also
reduces the gap. In addition, our studies showed that strain affects effective masses of the electron and hole
very differently. The effective mass of the hole increases with a tensile strain while the effective mass of the
electron increases with a compressive strain. Our results suggested both strain and size can be used to tune the
band structures of nanowires, which may help in design of future nanoelectronic devices. We also discussed
our results by applying the tight-binding model.
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I. INTRODUCTION

One-dimensional semiconductor nanostructures, such as
Si and Ge nanowires, have attracted extensive research ef-
forts over the past decade.1–12 They are expected to play
important roles as both interconnects and functional compo-
nents in future nanoscale electronic and optical devices, such
as light-emitting diodes �LEDs�,3 ballistic field-effect transis-
tors �FETs�,4,5 inverters,6 and nanoscale sensors.7,8 There-
fore, it is of great importance to study electronic properties
of those nanowires, such as band gap, density of state, and
effective mass of charge carriers. Compared to the material
of Si, Ge has some superior properties. For example, Ge has
an indirect band gap of 0.66 eV while the indirect band gap
of Si is at a value of 1.12 eV. Ge also has higher electron/
hole mobility, i.e., �n=3800 cm2 V−1 s−1 and �p
=1800 cm2 V−1 s−1, compared to �n=1500 cm2 V−1 s−1 and
�p=450 cm2 V−1 s−1 in Si at room temperature.13–15 A much
lower intrinsic resistivity of 46 � · cm in Ge is compared to
3.2�105 � · cm in Si. Therefore, Ge offers appealing oppor-
tunities for advanced device scaling, such as low drive volt-
age and high drive currents for high-speed electronics.14

From the point of view of the nanoscale applications, the
quantum confinement effects on Ge nanostructures are more
prominent than on Si nanowires, which is essentially related
to a much larger excitonic Bohr radius of 24.3 nm in Ge
compared to 4.9 nm in Si. This makes Ge nanostructures
more ready to be fabricated.

Recently, researchers were able to grow single crystals of
Ge nanowires with diameters down to a few angstroms and
lengths of tens of micrometers.10,15–18 In these nanoscale
wires, the charge carriers, electrons or holes, are confined in
the lateral direction of the wires, thus quantum confinement
effect is expected to play an important role. This effect has
been observed, for example, in photoluminescence �PL�

studies, and found to exhibit substantial blueshift of emission
with reduction in nanowire diameter. For instance, Audoit
et al.11 have grown Ge nanowires in the size range of
22 Å–85 Å using supercritical fluid methods. They ob-
served a clear blueshift in the PL of the nanowires compared
to the Ge band gap of 0.66 eV. Theoretically, researchers
found that the band gap of Ge nanowires are dependent on
several factors, such as size,19–21 crystalline orientation,20–22

surface chemistry,22,23 and doping.22,24

However, there is only very limited study11 of strain ef-
fects on electronic properties of Ge nanowires. It is well
known that strain is a very important factor from the growth
and application aspect of nanodevices. First, strain is not
avoidable during epitaxial growth if there is a lattice mis-
match between grown nanostructure and substrate. Second,
in many applications such as nanosensors, nanowires are
usually embedded in some materials within the coatings
bring strains to the wires. In the field of microelectronics,
strain has become a routine factor to engineer band gaps of
semiconductors. Recently, people found that strain can en-
hance the device’s performance by increasing the effective
mass of the electron and hole.25–27 Here, we give a thorough
study of the strain effects on band structure of Ge nanowires
with different sizes, using first-principles calculations.

II. SIMULATION DETAILS

Our first-principles density-functional theory �DFT�28 cal-
culations were performed using the Vienna computational
code �VASP�.29 The DFT local density approximation �LDA�
was applied. In detail, we used a pseudopotential plane wave
approach with kinetic energy cutoff of 300.0 eV. The core
electrons are described using ultrasoft Vanderbilt
pseudopotentials.30 The dangling bonds in the Ge wire sur-
face are saturated by hydrogen atoms. The size of the simu-
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lation cell along the axial direction of the �110� Ge nano-
wires is initially set to ainitial=3.977 Å, taken from the lattice
constant of bulk Ge 5.6245 Å �i.e.,ainitial=abulk /�2�. The lat-
eral size of the cell is chosen so that the distance between the
wire and its replica �due to periodic boundary conditions� is
more than 8 Å. Under this configuration, the interactions
between the wire and its replica are negligible. The �110�
axial lattice constant is then optimized through the technique
of total energy minimization. The electronic properties of the
wire, such as the band gap, the effective mass of charge
carrier, are then calculated by solving the Kohn-Sham equa-
tion within the frame of DFT. The band gap of a wire is
defined by the energy difference between the bottom of the
conduction band ��conduction-band edge �CBE� or the low-
est unoccupied molecular orbital �LUMO�� and the top of the
valence band �valance-band edge �VBE� or the highest occu-
pied molecular orbital �HOMO��. The effective masses of the
electron and hole can be readily calculated according to the
formula m�=�2�d2E /dk2�−1 from the band structure of the
wire.

Table I lists the Ge wires studied in the present work. NGe
is the number of Ge atoms in a given wire; NH represents the
number of H atoms needed to saturate the surface dangling
bonds in the wire; D is the diameter of a wire in the unit of
Å, defined as the longest distance between two Ge atoms in
the cross-section of the wire. Figure 1 gives the snapshots of
two Ge nanowires at size of 18 Å and 30 Å viewed from
the cross-section and the side of the wire. Blue dots are Ge
atoms and white are H atoms.

Based on the relaxed configurations of a wire �with the
axial lattice constants listed in Table I�, we then applied
uniaxial tensile/compressive strain by scaling the axial lattice
constant of the wire. The positive values of strain refer to
uniaxial expansion, while negative corresponds to compres-
sion �note that the lateral x and y coordinates of the wire are
further optimized at a given strain�. Our study showed elec-
tronic properties of the wire are affected significantly by
strain.

III. RESULTS AND DATA ANALYSES

A. Axial lattice constant

We first characterized the geometries of the relaxed Ge
nanowires. The lattice constant abulk in bulk Ge is 5.6245 Å

based on the simulation parameters mentioned above. The
initial axial lattice constant ainitial=3.977 Å of a �110� wire is
obtained from bulk Ge. This axial lattice constant was de-
fined as the interplanar distance between two consecutive
�110� planes. The total energy of the wire was calculated by
relaxing all lateral x and y coordinates. In order to optimize
the axial lattice constant �along z direction�, we performed a
series of calculations of the total energy with different lattice
constants for a given wire. Then the total energy in the wire
was plotted as a function of the axial lattice constant.
Through a parabolic fitting of the above plot �the total energy
versus lattice constant�, we were able to find the optimized
axial lattice constant aoptimized. For example, we found that
aoptimized=3.997 Å for the wire with a diameter of 12 Å,
which is greater than ainitial=3.977 Å. That means the wire
expands along the axial direction upon relaxation, which is
in a good agreement with experimental data.11 For all wires
studied in present work, aoptimized are reported in the fifth
column of Table I. For instance, aoptimized=3.984 Å for the
second smallest wire of 18 Å. Larger wires beyond 20 Å
have the same lattice constant of aoptimized=3.977 Å, as well

TABLE I. A list of studied Ge nanowires along �110� direction in present work. NGe is the number of Ge
atoms in a given wire; NH represents the number of H atoms needed to saturate the surface dangling bonds;
D is the diameter of a wire; the fourth column is the optimized axial lattice constants of the wires; Eg is DFT
predicted band gaps; me

� and mh
� are DFT predicted effective masses of the electron and hole.

NGe NH

D
�Å�

Axial lattice
�Å�

Eg

�eV� me
� mh

�

16 12 12 3.997 1.54 0.12 0.11

42 20 18 3.984 1.02 0.12 0.09

76 28 25 3.977 0.73 0.11 0.15

110 32 30 3.977 0.61 0.11 0.19

172 44 37 3.977 0.49 0.11 0.31

276 52 47 3.977 0.39 0.11 0.47

FIG. 1. �Color online� Snapshots of Ge nanowires with size of
18 Å �top� and 30 Å �bottom� viewed from the wire cross-section
�left� and the side �eight contiguous simulation cells along the axial
z direction�. Blue dots are Ge atoms, white are H atoms.
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as the bulk. This implies the axial expansion is negligible in
the wires with a diameter larger than 20 Å.

In our previous work of Si �110� nanowires,31 we also
found the Si nanowires expanded axially upon relaxation.
However, the expansion only became negligible when the
size of the nanowires was beyond 40 Å. Although both Si
and Ge crystals have diamond structures and tetrahedral net-
working, a Si-Si bond is stronger than a Ge-Ge bond. When
the bonds of surface atoms of Si nanowires are cutoff, it will
cost more surface energy compared with the case for the Ge
nanowires. This may account for the larger required size of
the Si nanowires for the disappearance of axial expansion, in
which extra surface energy is accommodated by the interior
and saturation atoms without much change in the lattice con-
stant.

B. Band gaps

1. Size effects

Bulk Ge is an indirect band-gap material with the
conduction-band minima located at L along the �111� direc-
tion. However, if the Ge nanowires are along the �110� di-
rection, they will show a direct band gap at �, as shown in
the literature.19,21,22 In Fig. 2, we present the band structures
of Ge nanowires with varied diameters. It clearly demon-
strates a direct band gap—both CBE and VBE located at �,
consistent with previous work.19,21,22

As mentioned before, the band gap of a Ge wire is defined
by the energy difference between CBE and VBE �or HOMO-
LUMO gap�. In the fifth column of Table I, we report the
DFT predicted band gaps for the Ge wires. It is known that
DFT underestimates band gaps of semiconductors, while ad-
vanced GW method32–34 and quantum Monte Carlo
calculations35–37 provide improved predictions. However,
previous studies38 on Si nanoclusters and nanowires showed
that the DFT gap predicts a similar size-dependency as the
optical gap obtained using GW and quantum Monte Carlo
methods.35,37 The band gap of the Ge nanowire in Table I is
increased when the size of the wire is reduced. This effect is
primarily due to quantum confinement. Our predicted size
dependence of the band gap in Ge nanowires is in a good
agreement with the literature19 and reference within.

2. Strain effects

It is also interesting to observe that the band structures are
modulated with strain. For example, in Fig. 3�a�, we com-

pared the band structures of the Ge nanowire with a diameter
of 18 Å, with and without strain. Black solid lines are the
band structure without strain; dashed lines are under tensile
uniaxial strain; dotted lines are under compressive uniaxial
strain. Generally, strain has dominant effects on the band
structure near � �i.e., energy is shifted evidently with strain,
see the dashed pink ovals�, while it has negligible effects on
wave vectors far away from � �i.e., minimal energy shift
under strain, see the solid green ovals�. Most electronic prop-
erties are related to the bottom of the conduction band and
the top of the valence band. Therefore, the energy variation
in these two edges was particularly singled out and presented
in Figs. 3�b� and 3�c�. From those two figures we can clearly
see that strain modifies the energies of CBE and VBE dra-
matically near �, and has negligible energy shifts on wave
vectors far away from �.

The variation in band gaps as a function of uniaxial strain
for several different sized wires is plotted in Fig. 4. For the
wire with a diameter of 12 Å, the band gap variation with
strain is almost linear, as shown by the green-triangle curve.
The gap decreases with expansion and increases with com-
pression. The gap variation with strain in the wire with di-
ameter of 18 Å, shown by the blue-star curve, has a more
modest change in the gap for a given strain, compared with
the 12 Å wire. However, for the wire with diameter of
25 Å, the gap variation with strain, shown by the red-
diamond curve, exhibits a nearly parabolic behavior, the gap
drops not only under expansion, but also under compression
beyond 2%. This parabolic behavior is more evident for the
larger wire with diameter of 37 Å, shown by the black-dot
curve. We conclude that the strain effect on the band gap in
Ge wires is strongly dependent on its size.
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FIG. 2. The band structures of Ge nanowires with varied diam-
eter along �110� direction. They show a direct band gap located at
�.

The band
shift with
strain is
negligible

The band
shift with
strain is
evident

-1.5

-1.0

-0.5

0.0
(b) bottom of conduction band

-2.2%
-1.2%
-0.2%
0.0%
+0.8%
+1.8%

En
er
gy
(e
V
)

0.0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0(a)

KΓ K

En
er
gy
(e
V
)

Wave Vector

-3.5

-3.0

-2.5

-2.0
(c) top of valence band

KWave VectorΓ

-2.2%
-1.2%
-0.2%
0.0%
+0.8%
+1.8%

En
er
gy
(e
V
)

FIG. 3. �Color online� �a� The band structures of Ge �110� nano-
wires with a diameter of 18 Å , with and without strain. Black solid
lines are the band structure without strain; red dashed lines are
under tensile uniaxial strain; blue dotted lines are under compres-
sive uniaxial strain. The energy variations of the bottom of the
conduction band �b� and the top of the valence band �c� in Ge
nanowires of 18 Å with uniaxial strain. The uniaxial strain has a
dominant effect of shifting energies on the conduction and valence
bands near �.
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C. Effective masses

1. Size effects

The effective masses of the electron and hole can be cal-
culated from the band structure of the Ge wires. We take the
nanowire with a diameter of 37 Å as an example. As shown
in Fig. 5, we first calculated the energy dispersion curve
without strain near � in a fine step, shown by the solid and
hollow circles. The wave vector ranges from −0.1 to +0.1,
where �0.1 is in units of 2� /a �a is the axial lattice con-
stant�. Figure 5 also shows the energy dispersion curves un-
der different strains, which will be discussed later. Then the
curves of the energy dispersion around � are fitted using the
second order polynomial E=C1k2+C2k+C3. We can obtain
the curvature of the energy-dispersion curve as C1

= 1
2 �d2E /dk2�. Furthermore, we can calculate effective mass

of the electron and hole through the relation m�=�2 /2C1. In
Table I, we report the calculated results in the last two col-
umns. me

� represents the effective mass of the electron, while
mh

� is the effective mass of the hole, in units of electron mass
me. For example, the effective mass of the electron me

� in the
wires with diameters of 12 Å and 18 Å are 0.12 me; in the

larger four wires are 0.11 me, with negligible change. On the
other hand, the effective mass of the hole mh

�, in general,
increases with size, from 0.11 me in the wire with diameter
of 12 Å to 0.47 me in the 47 Å wire. Note that the smaller
effective mass of the charge carrier in a material implies
larger mobility of charge carrier, thus increasing the operat-
ing speed of devices made from the material.

2. Strain effects

We studied the effect of strain on effective masses of the
electron and hole near �. In order to calculate the effective
masses of the wire with diameter of 37 Å, the dispersion
relation in the region near � are plotted under different val-
ues of strain, as shown in Fig. 5. As shown in Figs. 6�a� and
6�b� by the green-star curves, under 2% compressive strain,
the effective mass of the electron is increased to 0.166 me
�increased by 55%�, while the effective mass of the hole is
reduced to 0.133 me�decreased by 57%�. In contrast, under
2% expansive strain, the effective mass of the electron is
deceased to 0.102 me�reduced by 4.7%�, while the effective
mass of the hole increases dramatically to
1.139 me�increased by 270%�, resulting from the nearly flat
energy dispersion relation in Fig. 5, shown by the blue-
pentagon curve.

The change in effective masses of the electron and hole
with strain is also dependent on the size of nanowires, given
in Figs. 6�a� and 6�b�. However, all these changes have a
general trend. It shows, in Fig. 6�a�, that the effective mass
of the hole reduces under compression, while enhanced dra-
matically with tensile strain. However, the effective mass of
the electron increases rapidly with compressive uniaxial
strain, while decreasing mildly with tensile strain, as shown
in Fig. 6�b�.

IV. DISCUSSION

A. Size dependence of strain effects on the gap

In order to understand the size dependence of the strain
effects on the gap �Fig. 4�, we first examined the variations
of the energies of VBE and CBE with strain. The energies of
CBE and VBE in two wires, whose diameters are 12 Å and

-4 -2 0 2 4

-0.10

-0.05

0.00

0.05

0.10 12 Å
18 Å
25 Å
37 Å

E g
(ε

)−
E g
(ε

=
0)
(e
V
)

Strain ε (%)

FIG. 4. �Color online� The change in the DFT predicted band
gap in Ge wires as a function of uniaxial strain 	 at different size.
Positive strain refers to uniaxial expansion while negative strain
corresponds to its compression.
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FIG. 5. �Color online� The conduction and the valence bands of
wire with diameter of 37 Å at the near region of � are plotted
under different values of uniaxial strain. The effective masses of the
electron and hole are obtained through parabolic fitting the band
edges according to the formula m�=�2�d2E /dk2�−1.
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37 Å, are plotted as a function of strain in Figs. 7�a� and
7�b�. It is clear that the energies of the CBE and VBE in the
12 Å wire are a linear function of strain. The energies of the
CBE and VBE decrease with expansion while increasing
with compression. In addition, the slope of the CBE plot,
shown by the hollow-star graph, is slightly smaller �i.e.,
more negative� than that of the VBE plot, given by the graph
of solid stars. Since the band gap is given by the energy
difference between the CBE and VBE, it is also a nearly
linear function of strain �see 12 Å curve in Fig. 4�. However,
for the 37 Å wire, the energies of the CBE and VBE, shown
by the graphs of the hollow and solid dots, are not linear
functions with strain. Generally, both energies of the CBE
and VBE are reduced under expansion and increased with
compression. However, the curve of the CBE decreases
faster than that of the VBE under expansion. On the other
side, the curve of the CBE increases slower than that of the
VBE under compression.

To understand the behaviors of the strain effects on CBE
and VBE shown in Fig. 7, it is necessary to study the strain
response in the lateral directions �i.e., x and y directions� in
the wire when strain is applied to the axial direction �i.e., z
direction�. As it would be expected, once the axial strain is
applied, the bonds in the x and y directions will change due
to the Poisson effect. For example, for the 12 Å wire, the x
and y directions shrink 0.1% and 0.5%, respectively, when
1.5% expansion is applied to the z direction. Similarly, for
the 37 Å wire, the x and y directions reduce by 0.2% and
0.4%, respectively, when 2% expansion is applied to the z
direction.

The electron wave function contour plots at the isovalue
of 0.02 for the VBE and CBE from the views of the lateral
cross-section and the side in the 12 Å Ge wire are presented
in Fig. 8. For both views of the wire, the orbitals of the VBE
and CBE have bonding character—the electron cloud is
mainly located in the intermediate regions shared by Ge at-
oms. From the above discussion of strain response, the lat-
eral xy plane will bear compressive strain once expansive
axial strain is applied to the wire. That means in the xy plane
the distance of Ge atoms will be reduced. The reduction in
Ge-Ge bond lengths makes the electron cloud of the VBE
and CBE orbitals more efficiently shared by Ge atoms. This
effect results in an increased electron-nucleus Coulomb at-
traction, thus an appreciable decrease in energies of both the
VBE and CBE �the change in the electron-electron repulsion
energy is relatively small�. In contrast, with uniaxial com-

pression, the lateral xy plane experiences expansive strain.
With this expansion, energies of both the VBE and CBE
increase due to the decrease in electron-nucleus attraction.
This explains the general variation trends of the energies of
the VBE and CBE with respect to strain in Fig. 7—i.e., the
energies of the VBE and CBE increase with compression
while decreasing with expansion. In addition, from Fig. 8,
we found that the orbital of the CBE is more delocalized than
that of the VBE. Thus, the electron cloud of the CBE is more
effectively shared by Ge atoms in the xy plane compared to
that of the VBE. As a result, the energy of the CBE is more
sensitive to strain than that of the VBE. Therefore, the slope
of the CBE curve in the 12 Å wire in Fig. 7 is slightly larger
than that of the VBE curve.

For the 37 Å wire in Fig. 7, we found the curve of the
CBE decreases faster than that of the VBE under expansion,
while the curve of the CBE increases slower than that of the
VBE under compression. This can be understood from the
combined effects of strain and degeneracy of band edges. If
we only consider the effect of strain in the larger nanowire,
we will expect a similar linear variation in band edges with
strain as discussed for the small 12 Å wire. However, for the
larger wire, the band edges are degenerate due to the tetra-
hedral �Td� symmetry of the core Ge atoms. Under uniaxial
strain, the Td symmetry of the core Ge atoms is broken and
the degeneracy of the band edges is released. In this case, the
degeneracy lifting of band edges will make the energies of
the CBE and VBE vary as parabolic functions of strain.39 In
this parabolic behavior, the energy of the CBE decreases
while that of the VBE increases under both expansion and
compression �see Ref. 39�. Thus the curves in Fig. 7 for the
larger wire can be understood from the combined effects of
strain and degeneracy lifting of band edges.

B. Strain and size effects on the effective masses

As shown in Figs. 3�b� and 3�c�, the strain effect on the
electronic bands is prominent at the gamma point while this
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FIG. 7. �Color online� The changes of CBE and VBE energies in
Ge nanowires are plotted as a function of uniaxial strain.

FIG. 8. �Color online� Electron wave function contour plots at
the isovalue of 0.02 for the VBE �left� and CBE �right� in the 12 Å
Ge nanowire viewed from the lateral xy plane �top� and the side yz
plane �bottom�. Red and green colors correspond to positive and
negative values of the wave functions. Blue dots are Si atoms, white
are H atoms.

STRAIN-MODULATED ELECTRONIC PROPERTIES OF Ge… PHYSICAL REVIEW B 80, 115322 �2009�

115322-5



effect becomes much smaller as approaching the K edge of
the Brillouin zone, i.e., the X point. In order to understand
this result, we applied the tight-binding model.40 In this
model, the wave function of a crystal is in a form of a Block
function, and the energy of the band can be expressed as
E�k�=Ev−
−��n,ncos�k� ·R� �, where the summation goes
over those R� of the nearest neighbors. To discuss the strain
effect on the Ge nanowires, the energy can be further sim-
plified as E�k�=Ev−
−2� cos�

k�a
2 �, where Ev is the energy

of atomic orbitals, k� is the magnitude of wave vector along
the direction of the wire axis, 
 is a small quantity contrib-
uted by the energy correction near the nucleus position, � is
called the overlap integral and is another term of energy
correction dependent on the overlap between orbitals cen-
tered at two neighboring atoms, and a is the lattice constant.
For the gamma point �k� =0�, the energy is E���=Ev−

−2�. For the X point �k� =

1
2

2�
a �, the contribution from the

overlap integral � vanishes and the energy is E�X�=Ev−
.
By applying strain to a Ge nanowire, the bond length be-
tween Ge atoms will be changed. Thus we expect a promi-
nent modification of the � value, while the variation in 
 is
negligible due to its local nature. Referring to the above for-
mulas of E��� and E�X�, strain will bring a more pronounced
effect in the energy at �, compared to other K points.

It is also interesting to notice the size dependence of the
effective masses of the electron and the hole as shown in
Table I. We found that the effective mass of the hole de-
creases substantially with the reduced diameters of the Ge
nanowires. In contrast, the effective mass of the electron is
less sensitive to the size. Karanth and Fu41 showed the simi-
lar findings in their calculations of InP nanowires. In order to
understand the simulated results we need consider the quan-
tum confinement effect on the nanowires. As the diameter of
Ge nanowire is reduced, the component of wave vector per-
pendicular to the wire axis, k�, becomes quantized and in-
versely proportional to the size of the nanowire.42 In this k�

always has a finite value. As a result, the top/bottom of the
valence/conduction bands will shift away from its bulk posi-
tion. This causes a nonparabolic band curvature, enhancing
the effective mass of electron.42 This effect of nonparabolic-
ity is originated from the second-order perturbation and is
usually small, consistent with our calculations of the effec-
tive mass of the electrons in Table I. For the hole, the situa-
tion becomes different. In Ge bulk crystal, the valence band
is degenerated with the light hole and heavy hole bands at �.
When k� becomes quantized, this degeneration will be re-
leased. The energy of the heavy hole band may shift lower,
compared with the energy of the light hole band. The reason
could be that for the heavy hole band, the overlap of wave
function in the direction perpendicular to the wire axis is
significant.43 In contrast, for the light hole band, the overlap
in the perpendicular direction is small �see Fig. 8�a�� al-
though this overlap is significant along the quantum wire
axis as shown in Fig. 8�b�. A larger overlap of wave function
in the perpendicular direction implies a smaller effective
mass in this direction �m�ef f�. Since here the amount of en-
ergy downshift by the quantized k� is approximately
�2k�

2 /m�ef f,
43 the energy of the heavy hole band, which has

a smaller m�ef f, will be decreased more.43 Consequently, the

light hole band becomes the very top valence band at � of
the nanowire and gives a smaller effective mass of the hole,
compared with the value of bulk crystal.

Finally it is necessary to briefly discuss the impact of
surface passivation on the results. In the present work, the
surface dangling bonds of Ge wires are passivated by hydro-
gen atoms. From the contour plots of electronic wave func-
tions near the Fermi level, the orbitals including HOMO and
LUMO are mainly contributed by Ge atoms rather than H,44

see Figs. 8�a�–8�d�. We conclude that our results of band gap
and effective masses of Ge nanowires are predominantly de-
pendent on the diameter and strain, rather than the surface H
atoms. Experimentally, the surface of Ge nanowires may be
saturated by oxygen under an ambient condition. From pre-
vious studies of Si nanowires and quantum dots,35,45–47 this
oxygen shell would bring surface states near the Fermi level
to become the HOMO and LUMO of the system. All elec-
tronic properties related to the HOMO and LUMO are ex-
pected to be different from that of H passivation. This effect
of surface chemistry �beyond the scope of the present work�
could be another tuning factor to modulate the electronic
properties of semiconductor nanostructures.

V. CONCLUSION

In summary, we found that �1� the nanowires expand
along the axial �110� direction compared to bulk Ge: the
expansion is evident for small wires with diameter less than
20 Å; �2� the band structures of Ge �110� wires display a
direct band gap at �; �3� the band-gap variation with uniaxial
strain is size dependent: for smaller wires with size around
12 Å, the band gap is a linear function of strain while for the
wires in the range of 20 Å–40 Å, the gap variation with
strain shows a nearly parabolic behavior resulting from the
localized nature of band edges; �4� strain affects the effective
masses of the electron and hole in a different manner: expan-
sion increases the effective mass of the hole, while compres-
sion increases the effective mass of the electron; �5� the
strain and size effects on these electronic properties of nano-
wires may be understood by applying the tight-binding
model. Our studies show that the effective masses of the
electron and hole can be reduced by tuning the diameter of
the wire and applying appropriate strain, which supports the
motivation for using Ge nanowires as components and inter-
connects in future nanoelectronics.
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